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Clinical Trials from 
the Statistician’s Side: 
Reducing Variability

W
e weren’t all born with math on the mind. 
Lucky for us, statisticians help to fill the 
void that many of us face when it comes 
to crunching numbers. Statistical reasoning 

is vital to any clinical trial, as it influences study design, 
data collection, and data analysis. Put simply, statistics 
is the art of summarizing data; better yet, summarizing 
data so that nonstatisticians can make meaningful con-
clusions. Clinical investigations typically involve collect-
ing large amounts of data, but at the end of the trial, we 
want the punch-line: Did the new treatment work, and is 
it clinically meaningful? One key statistical component to 
any clinical trial is minimizing variability. In this month’s 
column, we look at ways to reduce variability in a clinical 
trial through a hypothetical study.

Reducing Variability
When minimizing variability in retinal imaging data 

for a clinical trial, there exists a “uniform operations 
chain” consisting of the machine, operator, and reading 
center. First, it is important that the machine utilized 
is up to proper precision; if there are multiple study 
visits, it is beneficial for each site to consistently use 
the same machine for each exam. Next, whether the 
sponsor uses internal staff or contract monitors, it is 
important to ensure that these individuals are properly 
trained to use the equipment. It is also helpful for the 
same personnel to be used throughout the duration 
of the study, as maintaining consistent staff will help 
to lessen the subjectivity and variability involved with 
data collection and analysis. Additionally, standardizing 
the assessment methodology and grading criteria is of 
utmost importance. As an effective way to improve 
precision and reduce variability, it may be useful to cre-
ate an operations manual that contains specific instruc-
tions for imaging and an upfront practicum to ensure 

that procedures are being followed. Included could be 
written directions for carrying out every procedure: for 
example, a standard procedure for imaging and reading 
the image. Finally, the primary read of the image should 
be performed at a central reading center. In addition to 
providing standardized reader training, this will ensure 
that the process is accurate, and that bias and variabil-
ity are minimized.

Our Hypothetical Study
Setting up and testing hypotheses is an essential part 

of statistical inference. The question of interest is simpli-
fied into 2 competing claims between which we have 
a choice; the null hypothesis, denoted H0, against the 
alternative hypothesis, denoted Ha. Frequently a clinical 
trial is designed to show superiority of a new treatment 
(drug/biologic/device) over control (placebo/standard of 
care). In a superiority design, H0 assumes that the mea-
sure of interest is the same between the 2 treatments, 
and Ha assumes that the measures are different in favor 
of the new treatment. Determining the required sample 
size to test such hypotheses relies on 4 key parameters:

1.	The assumed difference in the measure of interest 
between the treatment groups in Ha; the larger the 
difference, the smaller the required sample size.

2.	The assumed standard deviation (sd) of the mea-
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sure; the smaller the sd the smaller the required 
sample size.

3.	The type 1 error rate (α), which is the probability 
of rejecting H0 when H0 is true (ie, the probability 
that the trial will incorrectly show that the new 
treatment is better than control); this probability 
should be small. For pivotal trials used for regulatory 
approval of a product, α is generally set to 2-sided 
level 0.05, which means that the test will incorrectly 
reject H0 when H0 is true in 5% of trials. Half of these 
times, 2.5%, the test will incorrectly reject H0 when 
H0 is true and show that the new treatment is supe-
rior control; the remaining 2.5% will show that the 
new treatment is inferior to control; therefore, in 
this type of design a 2-sided α = .05 is the same as a  
1-sided α = .025. The smaller the α the larger the 
required sample size.

4.	Power, which is the probability of rejecting H0 when 
Ha is true (ie, the probability that the trial will cor-
rectly show that the new treatment is better than 
control); this probability should be fairly high, 
generally 80% or 90% for pivotal trials to maximize 
the probability that a new treatment that is truly 
efficacious is shown to be efficacious in the trial. The 
larger the power the larger the required sample size.

The probability that a trial rejects the null hypothesis 
assuming the alternative hypothesis is true (power) 
decreases as the signal-to-noise ratio (assumed difference 
divided by the sd) decreases. For example, consider a 
study with the following hypothesis:

H0: The mean difference between Test and Control 
in the reduction of central subfield thickness by 
SD-OCT from baseline to Month 6 = 0 µm

Ha: The mean difference between Test and Control 
in the reduction of central subfield thickness by 
SD-OCT from baseline to Month 6 ≠ 0 µm. 
Where superiority of Test over Control will be con-
cluded if the mean difference (Test – Control)  
>0 µm.

Consider that previous studies showed a mean change 
from baseline for Test of 155 µm and a mean change 
from baseline for Control of 145 µm (ie, an assumed dif-
ference of 10 µm), each with a sd of 25 µm, yielding a sig-
nal-to-noise ratio of 10/25 = .4. With this signal-to-noise 
ratio, 200 subjects (100 subjects per treatment group) 
are required to have 80% power assuming a 2-sided α = 
.05 test.  If there are only enough resources to study  
130 patients, 1 way to reduce the number of required 
subjects and maintain power and α is to reduce the sd.  

If the estimate of sd from the previous studies came 
from local SD-OCT reads at different sites on various 
machines, where the sites were not trained on a stan-
dard procedure for both imaging the eye and reading 
the image, then future trials should be able to reduce 
the sd by implementing any of the following: train-
ing the sites on a standard procedure for imaging and 
reading the image; consistently using the same SD-OCT 
machine at each visit; and/or having the primary read 
of the image performed at a central reading center. For 
example, training the sites on a standard procedure 
would decrease the sd from 25-20 µm. This reduction 
in sd [and increase in signal-to-noise ratio from 0.4-0.5 
(10 µm/20 µm)] would reduce the required number 
of subjects to 128 (64 subjects per treatment group). 
Additionally, implementing the use of the same SD-OCT 
machine at each visit and a central reading center fur-

Table 1. Sample size assuming a 2-sided α = 0.05 test of stated hypothesis

Signal-to-Noise Ratio 
(Mean Diff/sd)

Example Ratios Total Sample Size
80% Power

Total Sample Size
90% Power

2 10/5 4/2 12 14

1.5 10/6.667 4/2.667 18 22

1.25 10/8 4/3.20 24 30

1 10/10 4/4 34 46

0.8 10/12.5 4/5 52 68

0.667 10/15 4/6 74 98

0.5 10/20 4/8 128 172

0.4 10/25 4/10 200 266

0.333 10/30 4/12 286 382

0.25 10/40 4/16 506 676

0.2 10/50 4/20 788 1054



business of retina clinical trials for the retina specialist

30 RETINA Today July/August 2012

ther reduces the sd to 15 µm. This reduction in sd [and 
increase in signal-to-noise ratio to 0.667 (10 µm/15 µm)] 
would reduce the required number of subjects to 74 
(37 per arm). 

In this hypothetical study, the total sample size 
required for the study decreases from 200 to 128 to  
74 subjects as the signal-to-noise ratio increases from  
0.4 to 0.5 to 0.667 (sd decreases from 25 to 20 to 15 µm) 
through implementing standardized imaging and read-
ing procedures (Table 1). Implementing strategies to 
minimize the variability in the measure of the primary 
endpoint substantially reduces the number of subjects 
required, the cost, and the duration of a clinical trial and 
should therefore be investigated.

Another analysis method frequently used in clinical 
trials is to dichotomize a continuous measure into two 
groups: 1) those subjects whose measure is greater than 
a specified value, X, and 2) those subjects whose mea-
sure is less than or equal to a specified value, X. This new 
measure is then analyzed to determine if the proportion 
of subjects whose measure is greater than X is differ-
ent between the two treatment groups. However, care 
should be taken with dichotomization of continuous 
measures, as generally the sample size required to show a 
difference in the proportions is greater than the sample 
size required to show a difference in means on the origi-
nal continuous scale.  

Continuing with the example above, assume that the 
change from baseline in central subfield thickness scores 
follows a normal distribution with the same sd for each 
treatment group, and define a dichotomous Yes/No vari-
able of the form:

1  if the change from baseline is > X 
0  if the change from baseline is ≤ X 

Defining X as the value at the midpoint between the 
means of the treatment arms will yield the highest prob-
ability for detecting a difference between treatments of 
any Yes/No variable of the form.  In our example, the 
midpoint between the means of the treatment arms is 
(155+145)/2 = 150.  Therefore, testing the difference in 
the proportion of subjects with a change from baseline 
greater than 150 µm, through the hypothesis below, 
yields the highest probability of detecting a difference 
between the treatments using a dichotomous variable. 

H0: The difference in the proportion of subjects with 
a change from baseline to Month 6 >150 µm in cen-
tral subfield thickness between Test and Control = 0 
Ha: The difference in the proportion of subjects with 
a change from baseline to Month 6 >150 µm in cen-
tral subfield thickness between Test and Control ≠ 0. 
Where superiority of Test over Control will be 
concluded if the difference in proportions (Test – 
Control) >0.

For example, an expected proportion of: 
Test subjects to have a change from baseline  
>150 µm is
•  58% (assuming a sd of 25 µm)
•  60% (assuming a sd of 20 µm)
•  63% (assuming a sd of 15 µm)
Control subjects to have a change from baseline 
>150 µm is
•  42% (assuming a sd of 25 µm)
•  40% (assuming a sd of 20 µm)
•  37% (assuming a sd of 15 µm)

Table 2. As the sd decreases (and the signal to noise ratio increases),  
the sample size required decreases.

Signal-to-Noise Ratio 
(Mean Diff/sd)

Proportion > Midpoint Total Sample Size
80% Power

Total Sample Size
90% PowerActive Control

2 0.84 0.16 16 20

1.5 0.77 0.23 26 32

1.25 0.73 0.27 36 46

1 0.69 0.31 52 70

0.8 0.66 0.34 76 100

0.667 0.63 0.37 114 152

0.5 0.60 0.40 194 260

0.4 0.58 0.42 306 408

0.333 0.57 0.43 400 532

0.25 0.55 0.45 784 1048

0.2 0.54 0.46 1226 1638



Note that as the sd of the measures on the continuous 
scale decreases, the expected proportion of change from 
baseline scores greater than 150 µm increases in the Test 
treatment subjects, the expected proportion decreases 
in the Control treatment subjects, and the difference in 
the expected proportion increases. Therefore, as shown 
with tests on the continuous scale, as the sd decreases 
(and the signal-to-noise ratio increases), the sample size 
required decreases.  

In this hypothetical study, using the dichotomous 
endpoint, the total sample size required for the study 
decreases from 306 to 194 to 114 subjects as the signal-
to-noise ratio increases from 0.4 to 0.5 to 0.667 (sd of 
continuous measure decreases from 25 to 20 to 15 µm; 
Table 2).  Therefore, reducing the variability of the mea-
sure also reduces the sample size required when dichoto-
mizing the measure. However, converting from a con-
tinuous to a dichotomous variable requires from 33-55% 
more subjects to test the differences between treatment 
groups (Figure 1).

Conclusion
Conducting a clinical trial and interpreting the results 

are complex, involved processes. It is important to keep 
in mind the measures of clinical significance, and the 
difference between statistically significant and clinically 
meaningful. Statistical significance does not necessarily 
translate to a clinically meaningful result for the patient. 
So, after the numbers have been crunched and the data 
analyzed, be sure to critically assess the results to make 
sure that a statistically significant outcome is meaningful 
and useful clinically.  n
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Figure 1.  Depicting the sample size requirements by signal-

to-noise ratio as shown in Tables 1 and 2.


